GillespieSSA: Implementing the Stochastic Simulation Algorithm in R

نویسنده

  • Mario Pineda-Krch
چکیده

The deterministic dynamics of populations in continuous time are traditionally described using coupled, first-order ordinary differential equations. While this approach is accurate for large systems, it is often inadequate for small systems where key species may be present in small numbers or where key reactions occur at a low rate. The Gillespie stochastic simulation algorithm (SSA) is a procedure for generating time-evolution trajectories of finite populations in continuous time and has become the standard algorithm for these types of stochastic models. This article presents a simple-to-use and flexible framework for implementing the SSA using the high-level statistical computing language R and the package GillespieSSA. Using three ecological models as examples (logistic growth, Rosenzweig-MacArthur predator-prey model, and Kermack-McKendrick SIRS metapopulation model), this paper shows how a deterministic model can be formulated as a finite-population stochastic model within the framework of SSA theory and how it can be implemented in R. Simulations of the stochastic models are performed using four different SSA Monte Carlo methods: one exact method (Gillespie’s direct method); and three approximate methods (explicit, binomial, and optimized tau-leap methods). Comparison of simulation results confirms that while the time-evolution trajectories obtained from the different SSA methods are indistinguishable, the approximate methods are up to four orders of magnitude faster than the exact methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework

Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...

متن کامل

Designing a new multi-objective fuzzy stochastic DEA model in a dynamic ‎environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)

This ‎paper presents a new multi-objective fuzzy stochastic data envelopment analysis model          (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA ‏model, the outputs and inputs are ‎characterized by random triangular fuzzy variables with normal distribution, in which ...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

A New Hybrid Algorithm to Optimize Stochastic-fuzzy Capacitated Multi-Facility Location-allocation Problem

Facility location-allocation models are used in a widespread variety of applications to determine the number of required facility along with the relevant allocation process. In this paper, a new mathematical model for the capacitated multi-facility location-allocation problem with probabilistic customer's locations and fuzzy customer’s demands under the Hurwicz criterion is proposed. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008